p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.34C24, C22.74C25, C42.76C23, C24.501C23, (C2×D4)⋊54D4, D4.57(C2×D4), C4⋊Q8⋊28C22, D4⋊6D4⋊17C2, D4⋊5D4⋊13C2, (C4×D4)⋊33C22, C23⋊3D4⋊5C2, (C2×C4).68C24, C2.26(D4×C23), C22≀C2⋊4C22, C4⋊D4⋊79C22, C4⋊C4.290C23, (C23×C4)⋊39C22, D4○(C22.D4), C23.356(C2×D4), C4.115(C22×D4), C22⋊Q8⋊22C22, (C2×D4).463C23, C4.4D4⋊20C22, (C22×D4)⋊33C22, C22⋊C4.15C23, (C2×2+ 1+4)⋊8C2, (C2×Q8).439C23, (C22×Q8)⋊65C22, C22.10(C22×D4), C42⋊C2⋊31C22, C22.19C24⋊21C2, C22.11C24⋊14C2, (C22×C4).350C23, C2.14(C2.C25), C22.D4⋊68C22, C23.38C23⋊18C2, (C2×C4⋊C4)⋊67C22, (C2×C4).663(C2×D4), (C2×C4○D4)⋊75C22, (C22×C4○D4)⋊21C2, (C2×C22⋊C4)⋊44C22, (C2×D4)○(C22.D4), (C2×C22.D4)⋊59C2, SmallGroup(128,2217)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.74C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=g2=1, e2=a, ab=ba, dcd=gcg=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1276 in 780 conjugacy classes, 428 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C24, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, 2+ 1+4, C22.11C24, C2×C22.D4, C22.19C24, C23⋊3D4, C23.38C23, D4⋊5D4, D4⋊6D4, C22×C4○D4, C2×2+ 1+4, C22.74C25
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, C25, D4×C23, C2.C25, C22.74C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 15)(2 16)(3 13)(4 14)(5 19)(6 20)(7 17)(8 18)(9 25)(10 26)(11 27)(12 28)(21 29)(22 30)(23 31)(24 32)
(1 26)(2 11)(3 28)(4 9)(5 21)(6 30)(7 23)(8 32)(10 15)(12 13)(14 25)(16 27)(17 31)(18 24)(19 29)(20 22)
(1 23)(2 24)(3 21)(4 22)(5 26)(6 27)(7 28)(8 25)(9 18)(10 19)(11 20)(12 17)(13 29)(14 30)(15 31)(16 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 5)(2 6)(3 7)(4 8)(9 32)(10 29)(11 30)(12 31)(13 17)(14 18)(15 19)(16 20)(21 26)(22 27)(23 28)(24 25)
(1 5)(2 6)(3 7)(4 8)(9 30)(10 31)(11 32)(12 29)(13 17)(14 18)(15 19)(16 20)(21 28)(22 25)(23 26)(24 27)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,26)(2,11)(3,28)(4,9)(5,21)(6,30)(7,23)(8,32)(10,15)(12,13)(14,25)(16,27)(17,31)(18,24)(19,29)(20,22), (1,23)(2,24)(3,21)(4,22)(5,26)(6,27)(7,28)(8,25)(9,18)(10,19)(11,20)(12,17)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,6)(3,7)(4,8)(9,32)(10,29)(11,30)(12,31)(13,17)(14,18)(15,19)(16,20)(21,26)(22,27)(23,28)(24,25), (1,5)(2,6)(3,7)(4,8)(9,30)(10,31)(11,32)(12,29)(13,17)(14,18)(15,19)(16,20)(21,28)(22,25)(23,26)(24,27)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,26)(2,11)(3,28)(4,9)(5,21)(6,30)(7,23)(8,32)(10,15)(12,13)(14,25)(16,27)(17,31)(18,24)(19,29)(20,22), (1,23)(2,24)(3,21)(4,22)(5,26)(6,27)(7,28)(8,25)(9,18)(10,19)(11,20)(12,17)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,6)(3,7)(4,8)(9,32)(10,29)(11,30)(12,31)(13,17)(14,18)(15,19)(16,20)(21,26)(22,27)(23,28)(24,25), (1,5)(2,6)(3,7)(4,8)(9,30)(10,31)(11,32)(12,29)(13,17)(14,18)(15,19)(16,20)(21,28)(22,25)(23,26)(24,27) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,15),(2,16),(3,13),(4,14),(5,19),(6,20),(7,17),(8,18),(9,25),(10,26),(11,27),(12,28),(21,29),(22,30),(23,31),(24,32)], [(1,26),(2,11),(3,28),(4,9),(5,21),(6,30),(7,23),(8,32),(10,15),(12,13),(14,25),(16,27),(17,31),(18,24),(19,29),(20,22)], [(1,23),(2,24),(3,21),(4,22),(5,26),(6,27),(7,28),(8,25),(9,18),(10,19),(11,20),(12,17),(13,29),(14,30),(15,31),(16,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,5),(2,6),(3,7),(4,8),(9,32),(10,29),(11,30),(12,31),(13,17),(14,18),(15,19),(16,20),(21,26),(22,27),(23,28),(24,25)], [(1,5),(2,6),(3,7),(4,8),(9,30),(10,31),(11,32),(12,29),(13,17),(14,18),(15,19),(16,20),(21,28),(22,25),(23,26),(24,27)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2M | 2N | ··· | 2S | 4A | ··· | 4H | 4I | ··· | 4X |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C2.C25 |
kernel | C22.74C25 | C22.11C24 | C2×C22.D4 | C22.19C24 | C23⋊3D4 | C23.38C23 | D4⋊5D4 | D4⋊6D4 | C22×C4○D4 | C2×2+ 1+4 | C2×D4 | C2 |
# reps | 1 | 1 | 4 | 2 | 4 | 2 | 8 | 8 | 1 | 1 | 8 | 4 |
Matrix representation of C22.74C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 3 |
0 | 0 | 4 | 0 | 4 | 1 |
0 | 0 | 4 | 4 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 4 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 4 |
0 | 0 | 4 | 4 | 4 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 4 | 1 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,4,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,3,1,1,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,3,1,1,4,0,0,0,1,0,0],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,1,4,0,0,3,1,1,4,0,0,0,0,0,4,0,0,0,0,4,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,3,1,1,4,0,0,0,0,0,1,0,0,0,0,1,0] >;
C22.74C25 in GAP, Magma, Sage, TeX
C_2^2._{74}C_2^5
% in TeX
G:=Group("C2^2.74C2^5");
// GroupNames label
G:=SmallGroup(128,2217);
// by ID
G=gap.SmallGroup(128,2217);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,184,570,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=g^2=1,e^2=a,a*b=b*a,d*c*d=g*c*g=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations